Phylogenetic Inference via Sequential Monte Carlo
نویسندگان
چکیده
Bayesian inference provides an appealing general framework for phylogenetic analysis, able to incorporate a wide variety of modeling assumptions and to provide a coherent treatment of uncertainty. Existing computational approaches to bayesian inference based on Markov chain Monte Carlo (MCMC) have not, however, kept pace with the scale of the data analysis problems in phylogenetics, and this has hindered the adoption of bayesian methods. In this paper, we present an alternative to MCMC based on Sequential Monte Carlo (SMC). We develop an extension of classical SMC based on partially ordered sets and show how to apply this framework--which we refer to as PosetSMC--to phylogenetic analysis. We provide a theoretical treatment of PosetSMC and also present experimental evaluation of PosetSMC on both synthetic and real data. The empirical results demonstrate that PosetSMC is a very promising alternative to MCMC, providing up to two orders of magnitude faster convergence. We discuss other factors favorable to the adoption of PosetSMC in phylogenetics, including its ability to estimate marginal likelihoods, its ready implementability on parallel and distributed computing platforms, and the possibility of combining with MCMC in hybrid MCMC-SMC schemes. Software for PosetSMC is available at http://www.stat.ubc.ca/ bouchard/PosetSMC.
منابع مشابه
Online Bayesian phylogenetic inference: theoretical foundations via Sequential Monte Carlo.
Phylogenetics, the inference of evolutionary trees from molecular sequence data such as DNA, is an enterprise that yields valuable evolutionary understanding of many biological systems. Bayesian phylogenetic algorithms, which approximate a posterior distribution on trees, have become a popular if computationally expensive means of doing phylogenetics. Modern data collection technologies are qui...
متن کاملBayesian Phylogenetic Inference using a Combinatorial Sequential Monte Carlo Method
The application of Bayesian methods to large scale phylogenetics problems is increasingly limited by computational issues, motivating the development of methods that can complement existing Markov Chain Monte Carlo (MCMC) schemes. Sequential Monte Carlo (SMC) methods are approximate inference algorithms that have become very popular for time series models. Such methods have been recently develo...
متن کاملGeneralised linear mixed model analysis via sequential Monte Carlo sampling
We present a sequential Monte Carlo sampler algorithm for the Bayesian analysis of generalised linear mixed models (GLMMs). These models support a variety of interesting regression-type analyses, but performing inference is often extremely difficult, even when using the Bayesian approach combined with Markov chain Monte Carlo (MCMC). The Sequential Monte Carlo sampler (SMC) is a new and general...
متن کاملInference and Filtering for Partially Observed Diffusion Processes via Sequential Monte Carlo
Diffusion processes observed partially or discretely, possibly with observation error, arise when constructing stochastic models in continuous time. The method of Sequential Monte Carlo provides an alternative to Markov Chain Monte Carlo methods, and can be effective in complex models at the cutting edge of scientific research. This paper introduces Sequential Monte Carlo approaches to inferenc...
متن کاملSequential Monte Carlo methods for graphical models
Inference in probabilistic graphical models (PGMs) does typically not allow for analytical solutions, confining us to various approximative methods. We propose a sequential Monte Carlo (SMC) algorithm for inference in general PGMs. Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targ...
متن کامل